China best Roboct 14.5 Inch DC Motor Brushless Servo Motor with Encoder 24V with Best Sales

Product Description

 

Size 14.5 Inch Motor
Rated Voltage 24V/36V/48V
Rated Current 8A
Rated Power 250W
Rated Torque  5N.m
Efficiency  ≥82%

Factory and qualification

FAQ
 

Q: What is your company doing and where is your company?

A: HangZhou RoboCT Technological Development Co., Ltd. is dedicated to providing the disabled, the elderly and medical Rehabilitation institutes with intelligent rehabilitation devices, rehabilitation assistance and smart solutions through combining Artificial Intelligence (AI)and robotic Technology with data analysis and cloud computing. It aims to promote medical.Rehabilitation and drive the pension industry with benefiting the disabled and people with mobility impairments as its own goal. It also involves the research and products development of exoskeleton technology in several fields such as entertainment, industry and sports.

Q: What’s the difference between you and other businesses?

A: Our company has a professional design team, one-stop logistics installation team, and worry free after-sales service to provide you with convenient, safe and worry free one-stop home decoration service

Q: What are the payment methods?

A: We provide you with the bank counter transfer payment, POS machine credit card payment, cash payment and other ways

Q: What is the payment process?

A: The main process is setting dimension – scheme analysis – scheme making – determining scheme – order processing – network query – order production – Logistics Delivery

Q: What services do you all provide?

A: We provide necessary installation, configuration, simple maintenance and technical support services within our capabilities.

Q: What is the corporate of your company?

In2018, RoboCT Technology has obtained Pre-A Round Financing and introduced industrial investors. The inflow off resources has jump-start the company. The corporate culture of RoboCT Technology is “solving problems, trusting each other and keeping pace with the times” which is kept in mind by all the staff. We work to broaden humans’ perception and expand physical fitness, satisfy people’s key demands for convenient moving and a free life and loyal to the corporate vision.

Q: What is the Corporate Vision of your company?

A: Besides, we strive to improve technology and broad envision with the times, keep Leading the technology to provide better robotic products. We stick to meticulously researching and eveloping in intelligent technology. That means we will better user experience through humanistic care and persistently enhance the industry chain of exoskeleton technology. All these efforts will pave the way for us to become a leading enterprise in terms of exoskeleton around the globe. The CHINAMFG of AI has arrived, and the future is bound to be a time when humans integrate with machines. Therefore, exoskeleton must be another accessory organ for humans. All in all, a small step taken by RoboCT Technology to develop exoskeleton technology is a giant leap for mankind

Q: Whether the product can be customized?

A:  Of course, we accept customized products, as long as you put CHINAMFG the demand, we will do our best.

Q: How to offer aftersales service?

A: Please contact our after-sales service personnel who will try their best to solve your after-sales problems.

Q: How can I get a quote?

A: Contact the sales, it’s necessary to know your company and project info before giving a quote, RoboCT have standard questions for you to reply. You can also email us. 

Q: What’s your company advantages?

A: High cost-effective goods, high-level technology products and perfect after-sales service.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Power Tools, Robot
Operating Speed: Low Speed
Function: Control
Casing Protection: Closed Type
Number of Poles: 10
Structure and Working Principle: Brushless
Customization:
Available

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China best Roboct 14.5 Inch DC Motor Brushless Servo Motor with Encoder 24V   with Best Sales China best Roboct 14.5 Inch DC Motor Brushless Servo Motor with Encoder 24V   with Best Sales
editor by CX 2024-04-25