Tag Archives: horizontal milling machine

China Standard Horizontal CNC Spline Milling Machine Adopts Servo Motor with Accurate Precision vacuum pump belt

Product Description

       HXK800×3000 CNC spline spindle milling machine
 
The overall high strength casting bed body, 4 rail layout, rail surface high frequency quenching, good rigidity, high precision. The bed saddle is on 2 guide rails, the bed, tail seat on 2 guide rails. Machine tool guide rail lubrication using centralized intermittent special lubrication pump lubrication, timely lubrication.

 

 

1.Overall high strength casting bed, 3 guide rail layout, guide rail surface high-frequency quenching, good rigidity, high precision. The bed saddle is on 2 guide rails, and the head, tail seat and center frame are on 2 guide rails. The machine is equipped with 2 support frames. Machine tool guide rail lubrication using centralized intermittent special lubrication pump lubrication, lubrication in time.

2.The milling head is driven by servo spindle motor, which can make the hob achieve infinitely variable speed and wide speed range. The milling head Angle is adjusted by worm gear and worm drive with variable tooth thickness, and the milling head is locked manually to ensure the stability of machining. Tool adjustment is manual.

3, feed axis [Z axis, X axis] using high precision ball screw through a wide number of servo motor direct drive, high transmission accuracy, good positioning accuracy.
4, headstock spindle C axis adopts wide number servo motor directly connected with high precision wear-resistant worm gear and worm pair (the worm gear and worm pair is variable tooth thickness, the backlash can be adjusted easily). Spindle aperture φ 130mm.
5, slide plate for dovetail guide rail, high position accuracy, good fast speed.
6, the spindle bearing is lubricated by oil, low temperature rise, high durability, and no daily lubrication maintenance.
7, the machine tail seat is mechanical, flexible and reliable.
8. The machine tool fixture is a clamping fixture (semi-arc), and the material is Cr12. Clamp can be manually adjusted in axial direction.
9, the machine is equipped with a wide range of control system.
10, the machine is equipped with chip discharging machine, the iron filings generated in the milling process directly into the chip discharging machine, to ensure the clean working environment.
11. The electrical components in the machine tool electrical control cabinet are delixi brand.
TWO.Machine structure and main technical parameters

 CNC spline milling machine is our company’s own research and development of a series of screw processing machine leading varieties, the product is designed for processing all kinds of screw shaft end spline and special machine tools. This machine adopts wide number 218 control system.

FAQ
Q1,  How do I send my query?
You can contact us via email, phone, instant messaging (WhatsApp, , Skype).

Q2,If you don’t know which model is suitable for your company, please tell us your requirements for the equipment, or you can send us the product drawings, and our engineers can help you choose the most suitable model for you. 

Q3,delivery time
The project will be completed within 20 days after receiving the deposit. Please communicate with the sales staff about the specific construction period. 

Q4,Payment Terms
30% by T/T as down payment, balance 70% by T/T before delivery. If others payment terms, we can discuss.Welcome to inquiry sales.

Q5,Can your engineers come to help us install and debug the machine? 
Yes, our engineers are available to travel to your place. Round flight tickets & accommodation will be at your cost.

Q6, If I can’t know how to operate. Can your engineer help me programme well on machine?
Sure. You can provide your detailed sample drawing.engineer can programme well on machine. Or in some machines, we will put into U-disc of operation video to help you.

Q7,Is there only 1 model of this device?
The standard processing diameter range of this equipment is 350mm, if you have other processing range, you can negotiate with the sales contact.  Length range, we can do from 1000mm to 8000mm, and all are integral cast bed. 

Q8, processing efficiency
Our CNC machine tool from the lathe bed casting weight, wide guide rail, large motor power, can use a maximum diameter of 50 round rod milling cutter processing, the maximum cutting depth can reach 40mm, so the processing efficiency is very high. 

Q9,What control system does the equipment use
Our standard configuration is HangZhou CNC system, fanuc and CHINAMFG can also be used, but the price is slightly different, please contact sales for details. 

The company can also make various special machine tools according to user requirements, welcome customers to negotiate work .

Contact Person:  Candy Hu

Hello, thanks for visiting CHINAMFG cnc machine tool manufacturering Co. Ltd. My name is Candy Hu , please send me your intrested Machine ,and your workpiece diameter range ,drawings are welcomed and would be replied at the first time.
>>>>>>>>>>>>>>>>>>>>>>>>>>you could also find me at 182&&3379&&8502 (please remove &) hope we could cooperate in the near future! 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Customized OEM CNC Machining
Warranty: 12 Months
Application: Metal
Process Usage: Metal-Cutting CNC Machine Tools, CNC Non-Conventional Machine Tools, Metal-Forming CNC Machine Tools
Movement Method: Linear Control
Control Method: Closed-Loop Control
Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Standard Horizontal CNC Spline Milling Machine Adopts Servo Motor with Accurate Precision   vacuum pump belt	China Standard Horizontal CNC Spline Milling Machine Adopts Servo Motor with Accurate Precision   vacuum pump belt
editor by CX 2024-04-17