Tag Archives: motors 24v

China Standard Low Voltage DC Motors 24V 3000rpm Gear DC Servo Motor 400W BLDC Motor with Encoder for Service Robot Eod Robot Patrol Robot manufacturer

Product Description

dc servo motor 24v brushless dc motor 3000rpm 400watt brushless dc motor with encoder for Automatic Xihu (West Lake) Dis.d Vehicle Tracked Robot

Model:KY80AS5714-30

Product overview

1.Product Features:

1)Protection grade:IP65, insulation grade:F

2)Winding overhang structure optimization, to minimize the copper loss and iron loss minimization, small volume, light weight, low temperature rise, high efficiency

3)Super high coercivity, the maximum magnetic energy product NdFe35 permanent magnetic materials, strong resistance to demagnetization, motor performance is stable.

4)Low noise, low vibration, low moment of inertia.

5)High torque, fast dynamic response, wide speed range, strong overload capacity (four times)

6)High Torque to inertia ratio&up to 25000Nm/kgm²

7)Fast dynamic response *time constant <20ms

8)Wide speed adjusting&feedback up to 1000:1

9)Steady speed precision up to 0.5%

10)High overload,2Mn/30s,3.5N.m/10s

11)Small volume and light

12.Silent,the lowest noise is only 45dB(A)

13.Protected with IP65,Class F insulation

2.Industry class:

a.The altitude should be over 1000 CHINAMFG above sea level
b.Environment temperature:+5ºC~+40ºC
c.The month average tallest relative humidity is 90%,at the same the month average lowest temperature is less than 25 
 

3.Product Parameter:

Model KY80AS5714-30 Volt 24v
Power 400w

Rated Torque

1.27Nm

Rated Speed

3000rpm

Rated Current

18.8A

Peak Torque

3.8Nm

Line Resistance

0.05Ω

Rotor Constant

0.56mH

Torque constant

0.06Nm/A

Back EMF Constant

10 v/kr/min

Rotor Inertia

281Kg.m2×10-6

Mechanical Time Constant

0.6ms

Electrical Time Constant

0.5ms

Encoder

2500ppr Weight 2.2kg

 

4.Related Products:

Model Volt Power Rated speed Rated Current Rated Torque Peak Torque Weight
Unit V W r/min A N.m N.m kg
KY60AS5711-30 24 100 3000 5.4 0.318 0.95 1.5
KY60AS5712-30 24 200 3000 10.4 0.63 1.89 1.5
KY80AS5712-15 24/48 200 1500 9.4/4.7 1.27 3.8 2.2
KY80AS5714-15 24/48 400 1500 21.3/10.6 2.55 7.65 3.6
KY80AS5714-30 24/48 400 3000 18.8/9.4 1.27 3.8 2.2
KY110AS0405-15 24/48 500 1500 24/14 3.1 10.8 6
KY110AS0408-15 24/48 800 1500 44/22 5 17.9 6.6
KY110AS571-15 24/48 1000 1500 52/28 6.3 22 7.8
KY110AS571-15 48 1500 1500 37.5 9.5 28 10
KY110AS0420-25 48 2000 2500 55 7.6 26 10

KY130AS0430-15

48 3000 1500 73 19 57 14

KY130AS571-15

48 1000 1500 28 6.3 22 7.8
KY130AS571-15 48 1500 1500 37.5 9.5 28 10

FAQ

Q: What are your main products?
A: We produce various kinds of dc motor & controller.
 
Q: Is there a MOQ for your motor controller?
A:  There is no MOQ requirement. But the more the better.
 
Q: How do you ensure the product quality?
A: We have strict test system in every link of material selection, production and final product, packing according to ISO9001 management.
 
Q: Is it possible for you to develop new controllers if we provide the tooling cost?
A: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q: How soon can you deliver the goods?
A: That depends on the exact model you order. For regular products, usually we will prepare some units in stock, we can deliver them within 3 working days.

Application

 

Application: Universal, Industrial, Car, Electric Vehicle
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 10
Samples:
US$ 110/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Standard Low Voltage DC Motors 24V 3000rpm Gear DC Servo Motor 400W BLDC Motor with Encoder for Service Robot Eod Robot Patrol Robot   manufacturer China Standard Low Voltage DC Motors 24V 3000rpm Gear DC Servo Motor 400W BLDC Motor with Encoder for Service Robot Eod Robot Patrol Robot   manufacturer
editor by CX 2023-12-11

China Best Sales 2022 factory supply RS 550 12v dc quiet electric motors 24v brush motor for drill near me factory

Warranty: 2year, 1 year
Model Number: XH-550-257113
Usage: BOAT, Car, Electric Bicycle, FAN, Home Appliance, Power tools, sweepers,
Type: Micro Motor
Torque: Customised
Construction: Permanent Magnet
Commutation: Brush
Protect Feature: Totally Enclosed
Speed(RPM): Customised
Continuous Current(A): Customised
Efficiency: IE 1
Product Name: 550 DC motor
Product Number: XH-550TS
Material: metal
Product Size: 29.7MM*41.8MM
Packing Size: 35.5*57CM
Piece Weight: 223g
MOQ: 100PCS
QTY: 96PCS
Packaging Details: 30 pcs/box,7 boxes/ctn, 210 pcs/ctn

2571 factory supply RS 550 12v dc quiet electric motors 24v brush motor for drill
Properties
1.industrial-grade raw materials,friendly to environment.
2.customizable to shaft as like shape and length.
3.Delicated parameter to supply without resistance.

product nameXH-550-257113product sizeΦ35mm*L57mmdiameter of axleΦ3.175product weight223gCustomizable parametersVoltage, current, speed, torque, power, exposed shaft size
Parameter table
modelScope of workworking voltageno loadmaximum efficiencyspeedcurrentspeedcurrenttorqueefficiencypowerVVRPMARPMAg.cm%wXH-550TS-125009-161250000.640001.480 0571 6.8XH-550TS-2412016-2624120000.596001.812005843.2
modelmaximum efficiencyStallSpeedCurrentTorqueEfficiencyPowerCurrentTorqueRPMAg.cm%WAg.cmXH-550TS-1250032502.49234614.712.31200XH-550TS-2412078004.218604810018.12180

Details
1.pure copper to better heat dissipation.
2.High quality carton brush to expand the worklife.
3.Powerful magnet to improve the efficiency.
4.Hard shell to resist the friction.

Customizable type
1)12/24v/36v can be select.
2)the available shaft shape as like D-shape,round,Flat,Hexagon Axis,Square Axis.
3)Bearing:Ball and fixed.
3)Shell:plastic,metal.
4)Tooth:Spur gear,helical gear.

ApplicationApplication
it can be widely applied for balance car,dryer hair,vacuum cleaner,juicer,drilling,electrical car….

Company InformationCompany profile Xihu (West Lake) Dis. motor founded in 2000year,focused on R&D service,5 QC,20 engineers,200 workers,8 production lines,fully facilities to application,the capacity of production more than 100.000.000pcs per year.the main catagories as like dc gear motor,worm gear motor,planetary gear dc motor,dc reducer dc gear motor.presently,our products have covered more than 80 countries as like Japan,UK,USA,Korea…achieved high praise from difference customers.expecting our signal can expand to all over the world and realize win-win.

Production Lines

Equipment

Collaboration Brand

Certificates

Packaging & ShippingPackaging
generally,50pcs 1 carton,the exactly depends on the customers requests.
Payment terms Paypal,Western union,TT,moneygram,TT…30% in advance,70% balance of payment before shipment. Shipping 1)we have 20years experienced forwarder(DHL,FEDEX,UPS,TNT…) agency to shipment,so the most competitive price can be supplied if you’re prefer.2)of course,you can select what you appointed courier to shipment.

RFQRFQ
Q1:what’s your MOQ?
A1:2pcs. Q2:what’s you lead time?A2:generally,5-7days to samples order,7-10days to batches order. Q3what’s the rpm?A3:1000-20000rpm can be customized Q4:Can be customized to D shaft?A4:of course,you can,while you need supply the exactly size to the length of shaft. Q5:What’s your payment terms?A5:Paypal,TT,and western union,of course,if you’re worry about the money of security,it is better select the Alipay. Q6:What’s your lead time?A6:generally,5-7days to samples order,7-10days to batches order. CommentsComments
More models,just click to here

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China Best Sales 2022 factory supply RS 550 12v dc quiet electric motors 24v brush motor for drill  near me factory China Best Sales 2022 factory supply RS 550 12v dc quiet electric motors 24v brush motor for drill  near me factory